Decision Tree Classification of Remotely Sensed Satellite Data using Spectral Separability Matrix

نویسندگان

  • M. K. Ghose
  • Ratika Pradhan
  • Sucheta Sushan Ghose
چکیده

In this paper an attempt has been made to develop a decision tree classification algorithm for remotely sensed satellite data using the separability matrix of the spectral distributions of probable classes in respective bands. The spectral distance between any two classes is calculated from the difference between the minimum spectral value of a class and maximum spectral value of its preceding class for a particular band. The decision tree is then constructed by recursively partitioning the spectral distribution in a Top-Down manner. Using the separability matrix, a threshold and a band will be chosen in order to partition the training set in an optimal manner. The classified image is compared with the image classified by using classical method Maximum Likelihood Classifier (MLC). The overall accuracy was found to be 98% using the Decision Tree method and 95% using the Maximum Likelihood method with kappa values 97% and 94 % respectively. KeywordsDecision Tree Classifier (DTC), Separability Matrix, Maximum Likelihood Classifier (MLC), Stopping Criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

Application of Different Methods of Decision Tree Algorithm for Mapping Rangeland Using Satellite Imagery (Case Study: Doviraj Catchment in Ilam Province)

Using satellite imagery for the study of Earth's resources is attended by manyresearchers. In fact, the various phenomena have different spectral response inelectromagnetic radiation. One major application of satellite data is the classification ofland cover. In recent years, a number of classification algorithms have been developed forclassification of remote sensing data. One of the most nota...

متن کامل

A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data

Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...

متن کامل

Evaluation of LISS-III Sensor Data of IRS-P6 Satellite for Detection Saline Soils (Case Study: Najmabad Region)

Soil Salinity has been a large problem in arid and semi arid regions. Preparation of such maps is useful for Natural resource managers. Old methods of preparing such maps require a lot of time and cost. Multi-spectral remotely sensed dates due to the broad vision and repeating of these imageries is suitable for provide saline soil maps. This investigation is conducted to provide saline soil map...

متن کامل

Coastal water quality assessment based on the remotely sensed water quality index using time series of satellite images

This study was conducted with the aim of providing a remotely sensed water quality index in Assaluyeh port using remote sensing technology. so, according to the region conditions, studying of scientific resources and access to satellite data, the parameters of heavy­metals, dissolved ions, SST, chlorophyll-a and pH were selected. Then, by reviewing sources, the product MYD091km, MYD021km, MOD02...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010